翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

concrete category : ウィキペディア英語版
concrete category
In mathematics, a concrete category is a category that is equipped with a faithful functor to the category of sets. This functor makes it possible to think of the objects of the category as sets with additional structure, and of its morphisms as structure-preserving functions. Many important categories have obvious interpretations as concrete categories, for example the category of topological spaces and the category of groups, and trivially also the category of sets itself. On the other hand, the homotopy category of topological spaces is not concretizable, i.e. it does not admit a faithful functor to the category of sets.
A concrete category, when defined without reference to the notion of a category, consists of a class of ''objects'', each equipped with an ''underlying set''; and for any two objects ''A'' and ''B'' a set of functions, called ''morphisms'', from the underlying set of ''A'' to the underlying set of ''B''. Furthermore, for every object ''A'', the identity function on the underlying set of ''A'' must be a morphism from ''A'' to ''A'', and the composition of a morphism from ''A'' to ''B'' followed by a morphism from ''B'' to ''C'' must be a morphism from ''A'' to ''C''.
== Definition ==

A concrete category is a pair (''C'',''U'') such that
*''C'' is a category, and
*''U'' is a faithful functor ''C'' → Set (the category of sets and functions).
The functor ''U'' is to be thought of as a forgetful functor, which assigns to every object of ''C'' its "underlying set", and to every morphism in ''C'' its "underlying function".
A category ''C'' is concretizable if there exists a concrete category (''C'',''U'');
i.e., if there exists a faithful functor ''U'':''C'' → Set. All small categories are concretizable: define ''U'' so that its object part maps each object ''b'' of ''C'' to the set of all morphisms of ''C'' whose codomain is ''b'' (i.e. all morphisms of the form ''f'': ''a'' → ''b'' for any object ''a'' of ''C''), and its morphism part maps each morphism ''g'': ''b'' → ''c'' of ''C'' to the function ''U''(''g''): ''U''(''b'') → ''U''(''c'') which maps each member ''f'': ''a'' → ''b'' of ''U''(''b'') to the composition ''gf'': ''a'' → ''c'', a member of ''U''(''c''). (Item 6 under Further examples expresses the same ''U'' in less elementary language via presheaves.) The Counter-examples section exhibits two large categories that are not concretizable.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「concrete category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.